Математическое моделирование термопластического состояния толстостенной сферической оболочки

Д. И. Соломатин, email: solomatin.cs.vsu.ru@gmail.com A. A. Верлин, email: alexandrverlin@mail.ru

Воронежский государственный университет

Аннотация. Определяется напряженное и деформированное состояние толстостенной сферической оболочки, испытывающей центрально симметричные распределенные силовые, кинематические и тепловые внешние воздействия. Принимается, что материал оболочки проявляет свойства теплопроводности, упругости и пластичности. Функции пластичности зависит от трех независимых инвариантов тензора напряжений. Построен алгоритм решения задачи для любого условия пластичности. Дано графическое представление решения.

Ключевые слова: полый шар, толстостенная сферическая оболочка, теромоупругопластическое состояние, эквивалентное напряжение, ассоциированный закон пластического деформирования, годограф напряжений.

Введение

Решение задачи о толстостенной сферической оболочке, испытывающей разные внешние воздействия приводится во многих книгах по теории упругости, пластичности, термоупругопластичности и научных статьях, например, [1-7]. Обычно рассматривается случай, когда процесс нагружения является простым [8-15]. Решение этой и аналогичных задач представляет интерес, поскольку можно получить аналитическое, или частично аналитическое решение для разных математических моделей.

Если рассматривать постановку задачи в информационном плане, то можно выделять исходные данные. К ним относятся внешние параметры, характеризующие внешние воздействия рассматриваемый объект, геометрические параметры константы (модули), входящие В определяющие материальные уравнения математической модели, которые устанавливают зависимость между внутренними параметрами состояния объекта. Поскольку искомые параметры состояния являются функциями параметров и модулей, то представление предельных условий в виде функций внешних параметров и модулей позволяет сформулировать

_

[©] Соломатин Д. И., Верлин А. А., 2021

задачу определения допустимых значений внешних параметров состояния, для которых нужно использовать ту или иную математическую модель для определения значений искомых параметров состояния.

1. Постановка залачи

Рассматривается задача о толстостенной сферической оболочке (полом шаре), испытывающей полярно симметричные внешние воздействия: давление p_b на внешнюю стенку $\rho=b$ и давление p_a на внутреннюю стенку $\rho=a$. Если на границы $\rho=a$ и $\rho=b$ действует кинематические воздействия тогда задаются перемещения на этих границах u_a и u_b соответственно. Также рассматривается тепловое воздействие на шар: на границе $\rho=a$ поддерживается температура T_a , на границе $\rho=b$ — температура T_b . Предполагается, что шар проявляет упругие и пластические свойства. Искомыми параметрами состояния в каждой точки шара являются компоненты тензора напряжений, компоненты тензоров деформаций и вектора перемещений.

Детали выбираемых математических моделей рассматриваются ниже по тексту.

2. Основные соотношения

Все нижеприводимые соотношения будем записывать в безразмерном виде. В качестве масштаба длины выбирается внешний радиус шара b. Все величины имеющие размерность напряжений отнесены к пределу пластичности на одноосное растяжение k. В области упругого состояния упругие деформации являются полными (нет остаточных деформаций). Масштабная единица для температуры 1° .

Рассмотрим условие пластичности:

$$f(\sigma_{\rho}, \sigma_{\theta}) = \frac{\varsigma(\sigma_{\rho}^{w} + 2\sigma_{\theta}^{w})^{\frac{1}{w}} + \eta((|\sigma_{\rho} - \sigma_{\theta}|^{m} + \alpha(\sigma_{\rho} - \sigma_{\theta})^{m})^{\frac{1}{m}}}{\varsigma + \eta(1 + \alpha)^{1/m}} = k(T)$$
(1)

На рис. 1 в плоскости σ_{ρ} , σ_{θ} показаны кривые пластичности, определяемые по формуле (2) для разных значений числовых коэффициентов в функции пластичности.

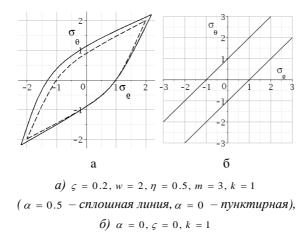


Рис. 1. Кривые пластичности

Результаты, представленные на рис. 1, показывают, что при учете первого инварианта тензора напряжений радиальное и окружное напряжения, когда точка шара находится в упругом состоянии может изменяться в ограниченном диапазоне.

Когда учитывается зависимость предела пластичности от температуры, вид кривых пластичности в плоскости $\sigma_{\theta} = \sigma_{\phi}$ зависит от радиальной координаты точки шара, находящейся в пластическом состоянии.

Если значения параметров состояния σ_{ρ} , σ_{θ} определяют точку области, ограниченную кривой пластичности, принимается, что определяющими уравнениями, связывающим напряжения и деформации, является соотношения закон Дюамея-Неймана [1, 7]:

$$E\varepsilon_{\theta} = (1 - v)\sigma_{\theta} - v\sigma_{\rho} + E\alpha T, \quad E\varepsilon_{\rho} = \sigma_{\rho} - 2v\sigma_{\theta} + E\alpha T$$
 (2)

Модули E и ν — модуль Юнга и коэффициентом Пуассона соответственно считаются константами.

Если параметры состояния σ_{ρ} , σ_{θ} определяют точки на кривой пластичности, то принимается аддитивное представление полных деформаций через обратимые и необратимые деформации:

$$\varepsilon_{\theta} = \varepsilon_{\theta}^{e} + \varepsilon_{\theta}^{p}, \quad \varepsilon_{\rho} = \varepsilon_{\rho}^{e} + \varepsilon_{\rho}^{p}$$
 (3)

Полные деформации определяются через перемещения по формулам:

$$\varepsilon_{\theta} = \frac{u}{\rho}, \quad \varepsilon_{\rho} = \frac{du}{d\rho}$$
 (4)

Полные деформации связаны условием совместности деформаций:

$$r\frac{d\,\varepsilon_{\theta}}{dr} + \varepsilon_{\theta} - \varepsilon_{\rho} = 0\tag{5}$$

Приращения необратимые деформации связаны с напряжениями нормальным законом, поэтому:

$$\frac{d \,\varepsilon_{\theta}^{\,p}}{\partial f \,/\,\partial \,\sigma_{\,\theta}} = \frac{d \,\varepsilon_{\,\rho}^{\,p}}{\partial f \,/\,\partial \,\sigma_{\,\rho}} \tag{6}$$

Соотношения (6) при выборе нелинейных функций (2) в общем случае неинтегрируемые [16]. Поэтому в дальнейшем для получения определяющих уравнений вместо (6) будем использовать нормальный закон пластического деформирования [14, 15]:

$$\frac{\varepsilon_{\theta}^{p}}{\partial f / \partial \sigma_{\theta}} = \frac{\varepsilon_{\rho}^{p}}{\partial f / \partial \sigma_{\rho}} \tag{7}$$

В квазистатическом приближении напряжения должны удовлетворять уравнению равновесия:

$$\rho \frac{d\sigma_{\rho}}{d\rho} + 2(\sigma_{\rho} - \sigma_{\theta}) = 0 \tag{8}$$

3. Поле температур

Поле температур в шаре находится из решения краевой задачи [1]:

$$\begin{cases} \rho \frac{d^{2}T}{d\rho^{2}} + 2 \frac{dT}{d\rho} = 0, \\ T|_{\rho=a} = T_{a}, T|_{\rho=b} = T_{b} \end{cases}$$
(9)

Решение задачи (9) представим в виде:

$$T = T_b + \frac{a\Delta T}{(b-a)} \left(\frac{b}{\rho} - 1\right), \quad \Delta T = T_a - T_b$$
 (10)

4. Упругая область

Из системы уравнений (8) соотношения (2), (5), исключая σ_{θ} , ε_{θ} , ε_{ρ} получаем уравнение для радиальной компоненты тензора напряжений:

$$\frac{d}{d\rho}(3\sigma_r + r\frac{d}{d\rho}\sigma_r) - \frac{2abE\alpha\Delta T}{(1-\nu)(b-a)\rho^2} = 0$$
(11)

Решая уравнение (11) и учитывая (10), находим [2]:

$$\sigma_{\rho} = A + \frac{B}{\rho^3} - \frac{\lambda}{\rho}, \quad \sigma_{\theta} = A - \frac{B}{2\rho^3} - \frac{\lambda}{2\rho}, \quad \lambda = \frac{abE\alpha\Delta T}{(1-v)(b-a)},$$

деформации

$$E\varepsilon_{\rho} = (1 - 2v)A + \frac{(1 + v)B}{\rho^{3}} + E\alpha \left(T_{b} - \frac{a\Delta T}{b - a}\right),$$

$$E\varepsilon_{\theta} = (1 - 2v)A - \frac{(1 + v)B}{2\rho^{3}} + E\alpha \left(T_{b} + \frac{a\Delta T}{b - a}\left(\frac{(1 + v)b}{2(1 - v)\rho} - 1\right)\right)$$
(12)

Из (4) и (12) следует, что радиальное перемещение:

$$Eu = (1 - 2v) A \rho - \frac{(1 + v)B}{2\rho^{2}} + E \alpha \left[T_{b} + \frac{a \Delta T}{b - a} \left(\frac{(1 + v)b}{2(1 - v)} - \rho \right) \right]$$

5. Граничные условия

Величины A, B определяются из граничных условий. Если шар находится в упругом состоянии и заданы условия $\sigma_{\rho}|_{\rho=a}=-p_a$, $\sigma_{\rho}|_{\rho=b}=-p_b$, то:

$$A = -p_b + \frac{a^3 \Delta p - \lambda (b^2 - a^2)}{b^3 - a^3}, B = -\frac{a^3 b^3 \Delta p + \lambda a^2 b^2 (b - a)}{b^3 - a^3}, \Delta p = p_a - p_b$$

Если на одной границе задано условие в напряжениях $u\mid_{\rho=a}=u_a$, а на другой в перемещениях $u\mid_{\rho=b}=u_b$, то:

$$A = \frac{aE\alpha\Delta T}{(1-2v)(b-a)} - \frac{(1-2v)(b^2-a^2)\lambda}{2(1-2v)(b^3-a^3)} - \frac{E\alpha T_b}{1-2v} + \frac{Eu_b b^2 - Eu_a a^2}{2(1-2v)(b^3-a^3)},$$

$$B = \frac{a^2b^2\lambda}{b^2+ab+a^2} + \frac{2a^2b^2(Eu_b a - Eu_a b)}{(1+v)(b^3-a^3)}$$

Если на одной границе задано условие в напряжениях $\sigma_{\rho}\mid_{\rho=a}=-p_{a}$, а на другой в перемещениях $u\mid_{\rho=b}=u_{b}$, то:

$$A = \frac{2b^2 E u_b - (1+v)a^3 p_a}{(1+v)a^3 + 2(1-2v)b^3} + \frac{((1-3v)b^2 + (1+v)a^2)\lambda}{(1+v)a^3 + 2(1-2v)b^3} - \frac{2b^3 E \alpha T_b}{(1+v)a^3 + 2(1-2v)b^3}$$

$$B = -\frac{2a^3b^2(Eu_b + (1-2v)bp_a)}{(1+v)a^3 + 2(1-2v)b^3} + \frac{a^2b^2(2(1-2v)b - (1-3v)a)\lambda}{(1+v)a^3 + 2(1-2v)b^3} + \frac{2a^3b^3E\alpha T_b}{(1+v)a^3 + 2(1-2v)b^3}$$

Кинематическое условие $u\mid_{\rho=b}=u_b$ эквивалентно условию $\sigma_{\rho}\mid_{\rho=b}=-p_b$, когда давление p_b вычисляется по формуле:

$$p_b = \frac{3(1-v)a^3bp_a - 2Eu_b(b^3 - a^3)}{(1+v)ba^3 + 2(1-2v)b^4} - \frac{((1+3v)a^3 - 4vb^3)T_b}{(1+v)a^3 + 2(1-2v)b^3} - \frac{((1-3v)(b^3 - a^3) + 3(1-v)a^2b)\lambda}{(1+v)ba^3 + 2(1-2v)b^4}$$

Данная формула полезна тогда, когда нужно знать какое давление p_b обеспечивает нужное значение перемещений на границе $\rho=b$.

Если в упругом состоянии находится часть шара, то алгоритм вычисления величин A, B, которые обычно называются константами интегрирования, зависит от того, где расположены упругая и пластическая области.

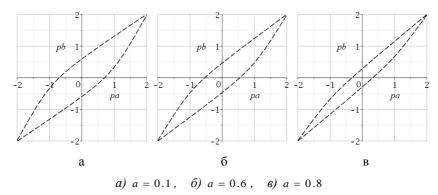
6. Эквивалентное напряжение

Термин эквивалентная величина используется для оценки какихлибо структур, полей величин и т. д. Эквивалентное напряжение — это выпуклые изотропные скалярные функции. Приравнивая эквивалентное напряжение функции пластичности можно построить образ кривой пластичности в подпространстве внешних параметров.

Когда шар испытывает только силовое внешне воздействие эквивалентное напряжение

$$\sigma_{eq} = \frac{\varsigma \left(\sigma_{\rho}^{w} + 2\sigma_{\theta}^{w}\right)^{\frac{1}{w}} + \eta |\sigma_{\rho} - \sigma_{\theta}|}{\varsigma + \eta}$$

в упругой области будет убывающей функцией радиальной координаты. Пластическая область будет зарождаться на внутренней границе шара. На рис. 2 показан образ кривой пластичности на плоскости p_a , p_b для разных значений внутреннего радиуса шара.



Puc. 2. Образ кривой пластичности, когда b = 1, k = 1, $\zeta = 0.2$, w = 2, $\eta = 0.5$

Когда значения параметров p_a , p_b определяют точку расположенную внутри кривой, изображенной на рис. 2, весь шар будет находиться в упругом состоянии. Для значений параметров p_a , p_b определяющих точку на кривой граница шара $\rho = a$ переходит в пластическое состояние.

7. Пластическая область

Если функция пластичности относительно напряжений σ_{ρ} , σ_{θ} линейная, то в пластической области задача определения напряжений имеет аналитическое решение [4, 6].

Для нелинейных функций пластичности задача определения напряжений решается численно. В этом случае дифференцируя функцию пластичности по радиальной координате, учитывая уравнение равновесия, получаем систему двух дифференциальных уравнений для определения напряжений:

$$\begin{cases}
\rho \frac{d\sigma_{\rho}}{d\rho} + 2(\sigma_{\rho} - \sigma_{\theta}) = 0, \\
\frac{d\sigma_{\theta}}{d\rho} - 2 \frac{\partial f/\partial \sigma_{\rho}}{\partial f/\partial \sigma_{\theta}} \frac{\sigma_{\rho} - \sigma_{\theta}}{\rho} - \frac{\partial k/\partial r}{\partial f/\partial \sigma_{\theta}} = 0
\end{cases}$$
(13)

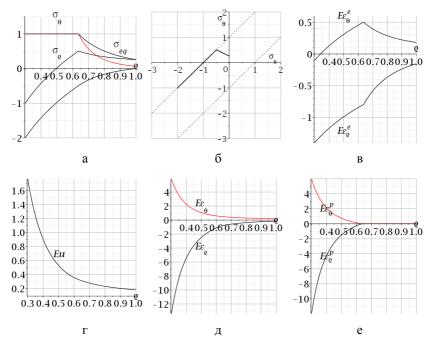
Уравнение для определения перемещений в пластической области получаем из системы (2)-(4), (7):

$$\frac{dEu}{d\rho} - \sigma_{\rho} + 2v\sigma_{\theta} - \frac{\partial f/\partial\sigma_{\rho}}{\partial f/\partial\sigma_{\theta}} \left(\frac{Eu}{\rho} - (1-v)\sigma_{\theta} + v\sigma_{\rho}\right) = 0$$

Если функция пластичности является кусочно-линейной, то вместо второго уравнения в системе (13) можно непосредственно используем функцию пластичности для каждого режима отдельно.

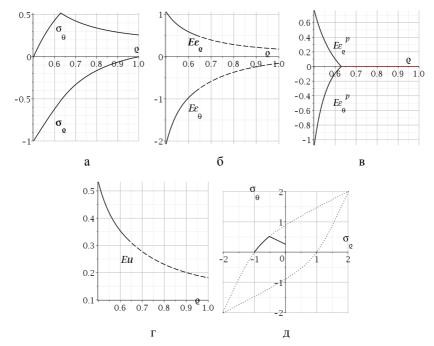
8. Результаты вычислений

На рис. 3-4 приведены графики для напряжений, деформаций, перемещений и годографа вектора напряжений, когда параметры a=0.5, b=1, $k_0=1$, $\nu=0.3$, w=2, $\eta=0.5$, $\varsigma=0.2$, $p_a=0.5$, $\gamma=0$.



а) напряжения, б) годограф ветора напряжений, в) упругие деформации г) перемещение, д) полные деформации, е) пластические деформации

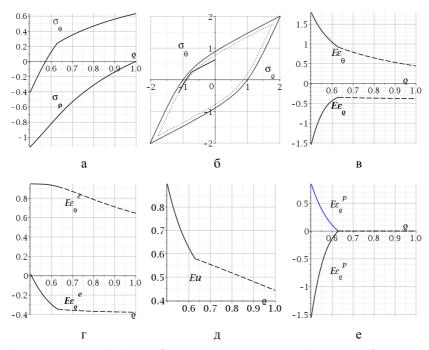
 $Puc. \ 3.$ Параметр $p_b = 0$, радиус упругопластической границы c = 0.629



а) напряжения, б) полные деформации (сплошная линия – пластическая область, пунктирная – упругая), в) пластические деформации, г) перемещение, д) годограф вектора напряжений

 $Puc.\ 4.$ Параметр $p_b=0$. Радиус упругопластической границы c=0.629

На рис. 5 приведены графики для напряжений, деформаций, перемещений и годографа вектора напряжений, когда зависимости предела пластичности от температуры $k=k_0\left(1-\psi\,T\right)$, а параметры a=0.5, b=1, $k_0=1$, $\nu=0.3$, $\varsigma=0.2$, w=2, $\eta=0.5$, $p_a=1.13$, $p_b=0$, $\chi=0.0017$.



а) напряжения, б) годограф вектора напряжений, в) полные деформаци, г) упругие деформации, д) перемещения, е) пластические деформации (сплошная линия – пластическая область, пунктирная – упругая)

Рис. 5. Радиус упругопластической границы c = 0.629

Выводы

Предложенная процедура определения напряженного и деформируемого состояния в пластической области шара справедлива для любого условия пластичности. Учет упругой, пластической сжимаемости и зависимость предела пластичности от температуры существенно влияет на распределение напряжений и деформаций в толстостенной сферической оболочке.

Литература

- 1. Timoshenko S. P. Theory of elasticity / S. P. Timoshenko, J. N. Goodier. New York : McGraw-Hill, 1970. 506 p.
- 2. Ильюшин А.А. Пластичность. Ч.1. Упруго-пластические деформации / А. А. Ильюшин. М.-Л.: ОГИЗ, 1948. 376 с.

- 3. Соколовский В. В. Теория пластичности / В. В. Соколовский. Москва : Высшая школа, 1969. 608 с.
- 4. Kachanov L. M. Foundations of the Theory of Plasticity / L. M. Kachanov. Amsterdam : North-Holland Publishing Company, 1971.-482 p.
- 5. Lubliner J. Plasticity Theory / J. Lubliner. New York: MacMillan Publishing Company, 1990. 516 p.
- 6. Chakrabarty J. Theory of Plasticity / J. Chakrabarty. Oxford : Elsevier Butterworth-Heinemann, 2006. 882 p.
- 7. Паркус, Г. Неустановившиеся температурные напряжения / Г. Паркус. Москва: Физматлит, 1963. С. 252.
- 8. Gamer U. On the elastic-plastic deformation of a sphere subjected to a spherically symmetrical temperature field / U. Gamer // Journal of Thermal Stresses. 1988. Vol. 13. P. 159–173.
- 9. Бабешко, М. Е. Термоупругопластическое деформирование составной оболочки в процессах осесимметричного нагружения с учетом третьего инварианта девиатора напряжений / М. Е. Бабешко, Ю. Н. Шевченко // Прикладная механика. 2010. Т. 46. С. 34–41.
- 10. Дац Е.П. Термоупругопластическое деформирование многослойного шара / Е.П. Дац, Е.В. Мурашкин //Изв. РАН. МТТ. 2017. № 5. С. 30–36.
- 11. Burenin A. Residual stresses in AM fabricated ball during a heating process / A. Burenin, E. Murashkin, E. Dats // AIP Conference Proceedings. 2018. Vol. 1959, —P. 070008. URL: https://doi.org/10.1063/1.5034683
- 12. Сёмка Э.В. Упругопластическое состояние полого шара / Э. В. Сёмка // Вестник инженерной школы ДВФУ. Серия: Механика деформируемого тела. 2020. № 3(44).
- 13. Aleksandrova N. N., Artemov M. A., Baranovskii E. S., Shashkin A. I. On stress/strain state in a rotating disk // AMCSM_2018 IOP Conf. Series: Journal of Physics: Conf. Series 1203 (2019) 8p. 012001 doi:10.1088/1742-6596/1203/1/012001
- 14. Aleksandrova N. N. On stress/strain state in a rotating disk / N.N. Aleksandrova, M.A. Artemov, E.S. Baranovskii, A.I. Shashkin // AMCSM_2018 IOP Conf. Series: Journal of Physics: Conf. Series. 2019, Vol. 1203, Article ID 012001 URL: http://doi.org/10.1088/1742-6596/1203/1/012001
- 15. Semka E. V. Mathematical modeling of rotating disk states / E V Semka, M A Artemov, Y N Babkina, E S Baranovskii and A I Shashkin // Published under licence by IOP Publishing Ltd Journal of Physics: Conference Series, Applied Mathematics, Computational Science and

Mechanics: Current Problems 11-13 November 2019. –Voronezh, Russian Federation – 2020. –V. 1479. – DOI:10.1088/1742-6596/1479/1/012122.

16. Ишлинский А. Ю. Математическая теория пластичности / А. Ю. Ишлинский, Д. Д. Ивлев. – Москва : Физматлит, 2001. - 704 с. – ISBN 5-9221-0141-2.